Inferring the total ¹⁹³Ir(n,n')^{193m}Ir Cross Section

P.Talou¹, M.B.Chadwick¹, R.Nelson², N.Fotiades², M.Devlin², P.E.Garrett³, W.Younes³, J.A.Becker³

Iridium isotopes are used as **radiochemical detectors**.

Isomer in ¹⁹³Ir: 11/2⁻, 10.5 day (g.s.: 3/2⁺)

The ¹⁹³Ir(n,n')^{193m}Ir reaction cross section can probe neutron fluences in the **few-MeV** neutron energy region (e.g. Fission neutrons).

Other (n,xn) reactions can probe higher-energy neutrons.

Status before this work: Experimental data (activation measurements by Bayhurst et al., 1975) for 4 energy points only.

New GEANIE/LANSCE (partial) data + modern theoretical calculations (GNASH).

A "Surrogate" Concept: Experiment measures part of the cross section, while theory is used to infer the missing (non-measured) remaining contributions.

¹T-16, Los Alamos National Laboratory

²LANSCE, Los Alamos National Laboratory

³Lawrence Livermore National Laboratory

Experimental data:

Activation measurements by Bayhurst et al. (1975) for four energy points only @ 7.57, 8.59, 9.34 and 14.7 MeV.

→ GEANIE data:

measure of the partial cross section through the sum of discrete γ -lines feeding the isomer, from threshold up to >30 MeV.

Measurement of the 4 strongest discrete lines at: 219.2 keV, 389.1 keV, 398.8 keV and 483.2 keV feeding the isomer.

GEANIE 4π y-rays detector

Theoretical Model Calculations:

→ GNASH code can calculate both total and partial cross sections for the Ir isomer.

<u>The idea</u>: *first*, validate model calculations through comparison with experimental information.

Second, use model predictions to correct experimental data for missing (non-measured) contributions.

Total isomer cross section:
$$\sigma(n,n') = \sigma\left(n,\sum 4\gamma\right)_{exp} \times \frac{\sigma(n,n')_{theory}}{\sigma\left(n,\sum 4\gamma\right)_{theory}}$$

Theoretical Modeling with the GNASH Code

Statistical Hauser-Feshbach Theory of the Compound Nucleus + Preequilibrium + Direct Reactions

Input Ingredients:

<u>Optical Potential</u> to infer elastic and reaction cross sections, and to provide transmission coefficients values to be used in HF decay equations.

Coupled-channels calculations: code ECIS96 (J.Raynal) used with OMP by. P.G.Young. First three members of the g.s. rotational band explicitly coupled.

<u>Nuclear Level Densities:</u> Ignatyuk prescription, including a washing-out of shell effects in the level density with increasing energy.

$$a(U) = \alpha \left[1 + f(U)\delta W/U\right]$$

With
$$\delta W = M_{exp}(Z,A) - M_{ld}(Z,A,\beta) \\ f(U) = 1 - exp\left(-\gamma U\right)$$
 (Id: liquid drop; $\beta =$ deformation)

γ-rays strength function: generalized Lorentzian strength-function formalism of Kopecky-Uhl.
 E1, M1, E2 radiations are included.

GEANIE observed levels

Experimentally, the excitation functions for the (very close in energy) 15/2⁻ and 13/2⁻ states are very similar in magnitude.

Theoretically, we can better reproduce this observation by **postulating** the existence of a high-spin state (above 600 kev) to redirect some of the flux feeding the 15/2⁻ state.

Sum of 4 observed γ-discrete lines

219.2, 389.1, 398.8, and 483.2 keV

Ir193 (n,n') isomer

Integral Data Testing

Critical Assemblies such as Flattop can be used to test this reaction cross section through integral measurement (cross section folded with neutron spectrum).

Flattop (transverse) Neutron Spectrum

New (n,n') cross section validates the *ad hoc* ansatz of MacInnes @ low energies.

Ratio [193 Ir(n,n') 193m Ir / GEANIE Σ_4 γ rays]

γ -rays transitions to the ground-state ?

